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Abstract

This contribution describes a rigorous
method for an efficient computation of
finlines on anisotropic substrates. It
allows a realistic description of these
waveguides because it can also consider the
second order effects such as the influence
of the metallization thickness and of the
substrate grooves on the transmission pro-
perties, which are calculated by means of
integral eigenvalue equations generated for
the interfaces of the considered cross-
section. Several examples for the effective
dielectric constant illustrate the applica-—
bility of the described method.

1_Introduction
Up to now, several con-
tributions have been pub- b’
lished describing the trans- +
mission properties of micro-
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of the above eigenvalue problem a complete
hybrid mode analysis is necessary. All the
electromagnetic fields inside the consi-
dered waveguide have the same z-coordinate
dependence of exp(+yz) with y the propaga-
tion constant. The harmonic time dependence
together with this z-dependence will be
omitted in the following train of thoughts.
It will also be assumed that there are no
free sources in the inner region being
considered.

Now, the cross—section of the unilate-—
ral finline which is given by Fig. 1, will
be subdivided into four regions (1) - (4).

Anisotropic
Substrate
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anisotropic substrates
<1,6,7>. In opposition to
the microstrip lines, fin-
lines on anisotropic sub-
strates have hardly been
treated. 0-
In the following, a calcula-
tion method for all known
grounded finline configura-
tions 1is described which
takes into account both the L

2
strip transmission lines on b
2

finite metallization thick- -
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ness and the influence of
the longitudinal slits in
the waveguide mount <2>. =
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Without restrictions of uni- ®
versal validity, the method z 0
presented in this contribu-

tion will be demonstrated to

the unilateral finline.

Let Fig. 1 represent the cross-section
of an wunilateral finline on anisotropic
substrate with ideal conducting metallic

walls and metallizations. In order to treat
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Cross-section of an unilateral
finline which to be analyzed.

Fig. 1:

The Hertzian potentials ®x and ¥y
satisfy the two dimensional Helmholtz equa~
tions in regions (1), (3) and (4) as well
as the boundary conditions on the metallic
walls, while these only inside the slot and
not on the metallization can be fulfilled.
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With reference to Fig. 1, for the
region (1) it is appropiate to write:
(1) ® (1) (1) (1)
[ = 3 B cos(k x) sin(k y) , (1)
X m=1 m Xm ym
(1) ® (L (1) (1)
v = 3 A sin(k x) cos(k vy, (2)
X m=1l m Xm ym
where
(1) mn
k = - . (3)
ym b
The TE-to-x and TM-to-x field compo—

nents for the region (1) are derivable from
the Hertzian potentials ®x(?> and WYx<(1)

respectively. It can easily be shown that
for the subregions (3) and (4) analogous
Hertzian potentials are valid. The separa-
tion parameter equations in the regions
(1), (3) and (4) are

(i) 2 (i) 2 2 2
k + k -y =k , 1=1,3,4 (5)
xm ym 0
where

2 2
k = ¢ pnp o . (8B)
0 0 O

If the problem of the finlines on

anisotropic substrates is to be solved, it
is a fundamental supposition that the
electromagnetic fields of this material (s.
region (2)) are known, too. The next
section descibes the field theory that may

be used to determine the electromagnetic
fields of the anisotropic substrate.

A complete study of anisotropic slabs
in rectangular waveguides is given by <4>,
where the matrix representation of fields
is wused. This method can be developed and
matched to the requirements of finlines
considered here.

It is assumed that the electromagnetic
properties of the 1lossless anisotropic
substrate (subregion (2)) could be de-
scribed by the permittivity tensor of se-
cond stage <(1>:

Ex x 0 Exz
T = eo 0 Eyy 0 . (7
€z x 0 €zz

Therefore, in subregion (2) the fields are
expanded into the following terms <4>:

(2) ® (2) sin (2)
B= 30 (o { Yk (yb'/2)) (8)
n mn=0 nm cos ym
and

(2) ® (2) sin (2)
B = 3 k) { Mk (ybr/2)) (9)
n m=0 nm cos ym

with n = x, y, z and

(2) m T
k = ——-
ym b’

(10)

From the coupled differential equations

d2 (2) (2)
(——= + f (y)> K +c C =0 , (11)
dx2 1 ym 1 ym
d2 (2) (2)
K<-—— + f (y)> ¢ + ¢ K =0 , (12}
dx=2 2 ym 2 ym
the wunknown function Cyn¢(2> and Kyn<2) can

be determined as linear
sine— and cosine-functions.

combinations of
The function f:

and fz as well as the constants ci1 and c2
are composed by the tensor elements and
propagation constants and can be derived

from the Maxwell’s equations.
the function Cym¢2?

As an example
is given by

(2) (2) (2)
(o} (x) = C cos(k (x-x ))
ym lym xm 1
(2) (2)
+ C sin(k (x-x )) (13)
2ym Xm 1
By wutilization of the solutions for
Cym¢2> and Kym¢2>, the other functions
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Cxm€2),..., Kxwn¢2),... can also be deter-

mined. Using the results for the functions
Cxm¢2,..., Kxm¢2),...,, the field compo-
nents of the electromagnetic field can be
derived (s. eqs. (8) and (9)).
4_The Eigenvalue Equation
The total fields obtained from the

Hertzian potentials and from the theory
described above must satisfy the interface
conditions at x = x1, x = x2 and X = X3
(Fig. 1). Considering the interface x = x2,
there are the following eight boundary and
continuity conditions which are mutally
independent:
-b*/2<y<-s Ey(2) = 0 ,

Ez(2> = ( R
-s<y<{+s Ey¢2) = Ey (3> s

Ez¢2) = E.¢3> ’

Hy<(2) = Hy(3) . (14)

Hz¢2)> = Hp(3) .
+8<y<+b’/2 : Ey¢2)> = 0 s

Ez¢(2) =0 .

It can be shown that at the interfaces

X = X1, resp. x = xz similar boundary and
continuity conditions are valid. It is in
satisfying all these conditions mentioned
above that different mathematical proce-
dures are employed leading to different
forms of the eigenvalue equation determi-
ning the transmission properties of the
finline. One of these mathematical proce-
dures 1is the Ritz-Galerkin method which
allows the elimination of the y-dependence

of the boundary and continuity conditions.
Using this method as described for finlines

with isotropic substrates in <2> yields a
system of integral eigenvalue equations
which can be converted into a system of
homogeneous equations:
- - b d
F-A =0 (15)
with F the system matrix and K the ampli-
tude vector. This eigenvalue equation can
only be solved in a nontrivial way if egq.
(16) is valid:

!
det{F(y)} = 0O (18)

thus yielding the propagation constant Y
and the field distributions.
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5 Results _and Discussion

Consider the wunilateral finline in
Fig. 1 on an anisotropic substrate whose
permittivity tensor is given by eq. (7). In
dimensioning such a waveguide, the effec-
tive dielectric constant must be known.
This value can be obtained, e.g., from the
ridge~loaded waveguide model for grounded
finlines <2>. In this case, the effective
dielectric constant of the unilateral fin-
line 1is calculated from the operating fre-
quency, wavelength and cutoff wavelength of
an equivalent air-filled ridge-loaded rec-—
tangular waveguide.

Another possibility to define
effective dielectric constant is, if
phase constant is quadratic normalized
the wave number ko:

the
the
on

(B / ko)2 .

(17)

Eeff

the results for the fields from the
method described above, the effective die-
lectric constant of the cross-section (s.
Fig. 1) should be calculated by eq. (17).

Tab. 1 shows the comparison of the
effective dielectric constant for isotropic
and similar anisotropic substrate materials
in dependence of the slot width 2-s.

Using

constant for
on isotropic
2.77 and an

anisotropic

PTFE
tensor
2.77,

Effective dielectric
an unilateral finline
substrate with er
unilateral finline on
substrate with anisotropic
cloth rotated by 30°. The
elements results as: €x x
Eyy 2.88, €z 2 2.54, Exz €z x
-0.19. (a=7.112mm, b=3.556mm,
b’=4.056mm, thickness of the sub-
strate = 250um, thickness of the
metallization = 50pum).

Tab. 2 shows that especially for fin-
lines with large slots it is important to
take the finite slit depth into account.
Errors of 3.6 percent (Ka-range values) in
the effective dielectric constant of the
unilateral finline on anisotropic substrate
can be realized by neglecting the effects
of the longitudinal slots. For the isotro-
pic finline the error is about 4.9 percent.
This error is greater than for the aniso-
tropic finline because the field concentra-



tion in the slot region is proportional to
the effective dielectric constant. There-
fore the influence of substrate slits in
the finline mount decrease for higher ef-
fective permittivities.
€eff | isotropic | anisotropic
—————————————— +_._~___————_+___—_______—
b’ = 3.556 mm | 1.02 | 1.12
______________ e e e
b = 4.056 mm | 0.97 | 1.08
______________ e e
Tab. 2: Effective dielectric constant for
an unilateral finline on isotropic
substrate with e = 2.77 and an
unilateral finline on anisotropic
substrate with anisotropic PTFE
cloth rotated by 30°. The tensor
elements results as: exx = 2.77,
Eyy = 2.88, €zz = 2.54, Exz = Ezx =
-0.19. (a=7.112mm, b=3.556mm,
2.s=1lmm, thickness of the sub-
strate = 250pm, thickness of the
metallization = 50um).
The trends of these results obtained
above are identical with those by <2> de-

rived for finlines on isotropic substrates.

6_Conclusion

As an example, the unilateral finline on
anisotropic substrate has been analyzed
using the orthogonal series field represen-—
tation technique and the Ritz-Galerkin
method. It has also been demonstrated the
effects of substrate anisotropy on the
unilateral finline characteristics. The
method employed here renders possible the
consideration of the second order effects,
too. This technique is numerically very
advantageous, since it only needs a small
number of geometrical and electrical para-
meters and amplitude coefficients.
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