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This contribution describes a rigorous

method for an efficient computation of

finlinea on anisotropic substrates. It

allows a realistic description of these

waveguides becauae it can alao consider the

second order effects such as the influence

of the metallization thickness and of the

substrate grooves on the transmission pro–
perties, which are calculated by means of

integral eigenvalue equationa generated for
the interfaces of the considered cross–

section. Several examples for the effective

dielectric constant illustrate the applica–
bility of the described method.

of the above eigenvalue problem a complete

hybrid mode analysis is neceaaary. All the

electromagnetic fields inside the consi–

dered waveguide have the same z-coordinate

dependence of exp(fyz) with y the propaga–

tion constant. The harmonic time dependence

together with this z–dependence will be

omitted in the following train of thoughts.

It will also be asaumed that there are no

free sources in the inner region being

considered.

Now, the cross–section of the unilate–

ral finline which is given by Fig. 1, will

be subdivided into four regiona (1) - (4).

&_~gtroduc&~~g

Up to now, several con-

tributions have been pub-

lished describing the trans–

mission properties of micro–

strip transmission lines on

aniaotropic substratea

<1,6,7>. In opposition to
the microstrip lines, fin–

lines on anisotropic sub–

strates have hardly been

treated.

In the following, a calcula–

tion method for all known

grounded finline configura–

tions is described which

takea into account both the

finite metallization thick–

ness and the influence of

the longitudinal slits in

the waveguide mount <2).

Without restrictions of uni–

versal validity, the method

preaented in this contribu–

tion will be demonstrated to

the unilateral finline.

Y

I
AnIsotropic

Substrate
1?1 I (L)

b’+—. .
2
b+—- -
2

+s

o--
-s- -

b.—
2
b’_-—
7
‘0

z

I I , 1 1
-x

0

Let Fig. 1 represent the cross-section
of an unilateral finline on anisotropic

substrate with ideal conducting metallic

walls and metallizationa. In order to treat

Xl X2X3 a

ZjgS._lL Cross–section of an unilateral
finline which to be analyzed.

The Hertzian potentials Q. and V.

satisfy the two dimensional Helmholtz equa-

tions in regions (l), (3) and (4) aa well

as the boundary conditions on the metallic

walls, while these only inside the slot and

not on the metallization can be fulfilled.
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With reference to Fig. 1, for the

region (1) it is appropriate to write:

(1) (1) (1) (1)

o =;B cos(k x) sin(k Y) , (1)
x ~.1 ~ xm ym

(1) (1) (1) (1)

v =;A sin(k X) cos(k Y) , (2)
x m.1 m xm ym

where

(1) m n
k = --- . (3)

ym b

The TE–to–x and TM–to-x field compo–

nents for the region (1) are derivable from

the Hertzian potentials OXtlJ and IYX(l)

respectively. It can easily be shown that

for the subregions (3) and (4) analogous

Hertzian potentials are valid. The separa–

tion parameter equations in the regions

(l), (3) and (4) are

(i) 2 (i) 2 2 2

k +k -Y =k , i=l,3,4 (5)

xm ym o

where

2 2

k =E G)

o 0 ‘o

[

Exx o Sxz

%-=EO o ~Y Y o

Czx o Ezz

. (7)

Therefore, in subregion (2) the fields are

expanded into the following terms <4>:

(2) @ (2) ,sin. (2)
E’ =~c (x)

()
(k’ “ (rb’/2)) (8)

n m.o nm Cos ym

and

(2)

H
(2)

= ~~o K
(2)(X) ~sinj(k

(y-b’/2)) (9)
n nm Cos ym

with n = x, y, z and

(2) m z

k .——_

ym b’
. (lo)

From the coupled differential equations

d2 (2) (2)
<––– + f (y)> K + C (2 =0 , (11)

dxz 1 ym 1 ym

If the problem of the finlines on

anisotropic substrates is to be solved, it

is a fundamental supposition that the

electromagnetic fields of this material (s.

region (2)) are known, too. The next

section descibes the field theory that may

be used to determine the electromagnetic

fields of the anisotropic substrate.

. (6)
d2 (2) (2)

<;;; + f (T)> C + ~ K

2
=0 , (12)

ym 2 ym

3 Electr~ggrignetic ~~glds in

@isotK~pic Su~gtrates

A complete study of anisotropic slabs
in rectangular waveguides is given by <4),

where the matrix representation of fields

is used. This method can be developed and

matched to the requirements of finlines

considered here.

It is assumed that the electromagnetic
properties of the lossless anisotropic

substrate (subregion (2)) could be de-
scribed by the permittivity tensor of se–

cond stage <1>:

the unknown function Cym(Zj and KY~f2J can
be determined as linear combinations of
sine– and cosine-functions . The function fl
and fz as well as the constants c1 and C2
are composed by the tensor elements and
propagation constants and can be derived
from the Maxwell’s equations. As an example

the function CYm(2> is given by

(2) (2)
c (x) = c COSJ2)( X-X ,,

ym 1 ym xm 1

(2) (2)
+C sin(k (x-x )) . (13)

2 ym xm 1

By utilization of the solutions for
cym(2) and Kym(2), the other functions
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Cam,.. ., Kxm(2), . . . can also be deter–

mined. Using the results for the functions

Cam,., ., Kim,.. ., the field compo–

nents of the electromagnetic field can be

derived (s. eqs. (8) and (9)).

&The Eigenvalus_~gug&~2g

The total fielda obtained from the

Hertzian potentials and from the theory
described above must satisfy the interface

conditions atx=xl, x ❑ x2 and x = x3

(Fig. 1). Considering the interface x = x2,

there are the following eight boundary and

continuity conditions which are mutally
independent :

~_Results and Discuss~gg

Consider the unilateral finline in

Fig. 1 on an anisotropic substrate whose

permittivity tensor is given by eq. (7). In

dimensioning such a waveguide, the effec-
tive dielectric constant must be known.
This value can be obtained, e.g., from the

ridge-loaded waveguide model for grounded

finlines <2>. In this case, the effective

dielectric constant of the unilateral fin-

line is calculated from the operating fre-

quency, wavelength and cutoff wavelength of

an equivalent air–filled ridge-loaded rec-

tangular waveguide.

Another possibility to define the
effective dielectric constant is, if the
phase constant is quadratic normalized on

the wave number ko:

–b’/2<y<–s : EY(2) = O
E,(2) = O

eeff = (I3 / ko)2 . (17)

-S(yc+s : EY(Z) = EY(3) ,

Ez(z) = EZ(3) ,

HY(2) = HY(3) , (14)
HZ(2) = HZ(3) ,

+s<y<+b’/2 : EY(2) = O s
EZ(2) = O

It can be shown that at the interfaces

x= x1 , resp. x = x3 similar boundary and

continuity conditions are valid. It is in

satisfying all these conditions mentioned

above that different mathematical

dures

proce–

are employed leading to different

forms of the eigenvalue equation determi–

ning the transmission properties of the
finline. One of these mathematical proce–

durea is the Ritz–Galerkin method which

allows the elimination of the y–dependence

of the boundary and continuity conditions.

Using this method as described for finlines

with isotropic substrates in <2> yields a

system of integral eigenvalue equations

which can be converted into a system of

homogeneous equations:

(15)

with
tude

only

(16)

det {~

thus

Using the results for the fields from the

method described above, the effective die-

lectric constant of the cross-section (s.
Fig. 1) should be calculated by eq. (17).

Tab. 1 shows the comparison of the
effective dielectric constant for isotropic
and similar aniaotropic substrate materials

in dependence of the slot width 2.s.

eeff I isotropic I anisotropic
------–––––––+–––––––––––+––––––––––––

2.s=O.6mm I 1.17 I 1.32
-––-–––––––––+–––––––––––+------------

2s=0.8mm I 1.11 I 1.23
–––––––––––––+–––––––––––+––––––-––––-

2.s=l.Omml 1,02 I 1.12
-––-–-–––––––+––-–-------+------------

Tab. 1: Effective dielectric constant for———————
an unilateral finline on isotropic

substrate with ~r ❑ 2.77 and an

unilateral finline on anisotropic
substrate with anisotropic PTFE
cloth rotated by 30°. The tensor
elements results as: Exx ❑ 2.77,

EYY = 2.88, EZZ = 2.54, ~XZ = EZX =

-0.19. (a=7. l12mm, b=3.556mm,
b’=4.056mm, thickness of the sub–

strate = 250pm, thickness of the

metallization = 50pm).

F the system matrix and A the ampli–

vector. This eigenvalue equation can
be solved in a nontrivial way if eq.

s valid:

yielding the propagation constant i

and the field distributions.

Tab. 2 ahowa that especially for fin–
lines with large alota it is important to

take the finite slit depth into account .
Errors of 3.6 percent (Ka-range values) in

the effective dielectric constant of the

unilateral finline on aniaotropic substrate

can be realized by neglecting the effects

of the longitudinal slots. For the isotro–
pic finline the error is about 4.9 percent.

This error is greater than for the aniso-

tropic finline because the field concentra-
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tion in the slot region is proportional to

the effective dielectric constant. There-
fore the influence of substrate slits in
the finline mount decrease for higher ef–

fective permittivities.

Seff I isotropic \ anisotropic
–---––––––––-–+---–-–-–––-+-–---–---–––

b’ = 3.556 mm I 1.02 I 1.12
––––––-–––-–––+–––––––––––+––––––––––––

b, = 4.056 mm I 0.97 i 1.08
–––––––-----–-+---–-----––+–––-––––––––

Tab. 2: Effective dielectric constant for

an unilateral finline on isotropic

substrate with ~r = 2.77 and an

unilateral finline on anisotropic

substrate with anisotropic PTFE

cloth rotated by 30”. The tensor

elements results as: Cxx = 2.77,

~YY = 2.88, ~ZZ = 2.54, EXZ = Czx =

-0.19. (a=7. l12mm, b=3.556mm,

2. s=lmm, thickness of the sub-

strate = 250pm, thickness of the

metallization = 50pm).

The trends of these results obtained

above are identical with those by <2> de-

rived for finlines on isotropic substrates.

gN~m~~lg~gg

As an example, the unilateral finline on
anisotropic substrate has been analyzed
using the orthogonal series field represen–

tation technique and the Ritz–Galerkin
method. It has also been demonstrated the
effects of substrate anisotropy on the
unilateral finline characteristics . The

method employed here renders possible the

consideration of the second order effects,

too. This technique is numerically very

advantageous , since it only needs a small
number of geometrical and electrical para–

meters and amplitude coefficients.
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